
나온지 꽤 된 논문인데요, ML 도메인에서는 아주아주 유명한 논문인 것 같습니다. ILSVRC'15 에서 당당하게 1위를 차지한 모델로, CVPR'16의 best paper 로 선정되었습니다. 마이크로소프트 북경 연구소에서 개발하였고, ResNet 으로 불리는 네트워크입니다. Shortcut/Skip connection 을 이용하여 residual (잔차) 을 학습시켜 성능을 향상시킨 논문으로, 이후 대부분의 모델들에서 ResNet 을 활용하게 되었습니다.Inspiration이 논문이 발표되기 이전까지, CNN 기반 모델의 정확도를 높이기 위해서는 보다 깊은 네트워크를 구성해야한다고 생각했습니다. 실제로 당시의 논문들을 보면 보다 깊은 네트워크의 성능이 더 나은 경우가 많았습니다.이러한 `가정`으로부터 ..